This is ACA # 31. It is OK to use your textbook, but if you can answers the questions without it that is OK too.

I recommend you print out this page and bring it to class. <u>Click here</u> to show a set of five ACA31 student responses, randomly selected from all of the student responses thus far, in a new window.

John , here are your responses to the ACA and the Expert's response.

For this ACA we will use this short version of the <u>Standard Reduction Potential Table</u>. You might want to print the table out before beginning the ACA.

Answer the following questions using the SRP Table.

1. Identify the species (name and/or formula) from the table above that is the most likely to be oxidized.

Li(s)

73%

27%	Lit
6º6	F2

Lithium, Li is the most likely species to be oxidized in this table.

2. Identify the species (name and/or formula) from the table above that is the most likely to be reduced.

F2(g)

Fluorine, F₂ is the most likely species to be reduced in this table.

We can use the Standard Reduction Potential Table to calculate the E° for a reaction. For example, we measured E° for a reaction $Zn(s) + Cu^{2+}(aq) ----> Cu(s) + Zn^{2+}(aq)$ in a BCE this week. We can calculate the E° the following way;

i) separate the reaction into its corresponding half-reactions;

ii) The oxidation half-reaction occurs at the anode and the reduction half-reaction occurs at the cathode:

iii) look up the E° for the half-reaction in the Standard Reduction Potential Table;

iv) calculate E° using the relationship $E^{\circ} = E^{\circ}_{cathode} - E^{\circ}_{anode}$ So for the reaction $Zn(s) + Cu^{2+}(aq) - ---> Cu(s) + Zn^{2+}(aq)$ the half-reactions are $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$ (oxidation at the anode)

 $2e^{-} + Cu^{2+}(aq) ----> Cu(s)$ (reduction at the cathode)

From the SRP Table the E° for the half-reactions are

E° (volts) **Half-reaction** $2e^{-} + Cu^{2+}(aq) ----> Cu(s)$ +0.34 $Zn^{2+}(aq) + 2e^{-} ---> Zn(s)$ -0.76

We determine E° for the reaction by using the equation $E^{\circ} = E^{\circ}_{cathode} - E^{\circ}_{anode} =$ +0.34 v - (-0.76 v) = +1.10 v

So $E^{\circ} = +1.10 v$

3. Using the Table of Standard Reduction Potentials determine whether each of the following reactions has a positive E° (standard cell potential) or a negative E°.

a) $2Cl^{-}(aq) + Cu^{2+}(aq) ----> Cl_{2}(g) + Cu(s) : E^{\circ} = -1.05 \text{ volts}$

E° (volts) Half-reaction

 $Cl_2(g) + 2e^{----> 2Cl^{-}(aq)}$ +1.36

 $2e^{-} + Cu^{2+}(aq) ----> Cu(s) +0.34$

6°10 1.36~ Cl20nly 18°10 1.70~ cadding both. 12°10 2.02~

 $Cl^{-}(aq)$ is being oxidized and $Cu^{2+}(aq)$ is being reduced, then

 $E^{\circ} = E^{\circ}_{cathode} - E^{\circ}_{anode} = +0.34 \text{ v} - (+1.36 \text{ v}) = -1.02 \text{ v}$

A negative ($E^\circ = -1.02$ V) cell potential for this reaction means it is not thermodynamically favored, it will not occur. So chlorine ion with an $E^\circ = -1.36$ volts is NOT very reactive.

b)
$$Mg(s) + Ca^{2+}(aq) ----> Ca(s) + Mg^{2+}(aq) : E^{\circ} = -0.50 \text{ volts}$$

Half-reaction E° (volts)
 $Mg^{2+}(aq) + 2e^{-} ----> Mg(s)$ -2.37
 $2e^{-} + Ca^{2+}(aq) ----> Ca(s)$ -2.87
 53%
 53%
 18%
 53%
 53%
 18%
 53%
 53%
 53%

Mg(s) is being oxidized and Ca²⁺(aq) is being reduced, then

$$E^{\circ} = E^{\circ}_{cathode} - E^{\circ}_{anode} = -2.87 v - (-2.37 v) = -0.50 v$$

negative ($E^\circ = -0.50$ V) this reaction is not thermodynamically favored, it will not occur.

c) $H_2O_2(aq) + 2H^+(aq) + 2Br^-(aq)> 2H_2O(l) + Br_2(g)$: E° = +0.70 volts (2)		
Half-reaction	E° (volts)	12% +2.841
$Br_2(l) + 2e^> 2Br^-(aq)$	+1.07	18% ?
$2e^{-} + H_2O_2(aq) + 2H^+(aq)> 2H_2O(l)$	+1.77	

Br⁻(aq) is being oxidized and $H_2O_2(aq)$ in H⁺(aq) is being reduced, then

 $E^{\circ} = E^{\circ}_{cathode} - E^{\circ}_{anode} = +1.77 v - (+1.07 v) = +0.70 v$

positive ($E^\circ = +0.70$ V) this reaction is thermodynamically favored, it will occur.

ACOC

Ies

Yes.

The E° for the reaction is +0.93 volts

Half-reaction	E° (volts)
$Pb^{2+}(aq) + 2e^{-}> Pb(s)$	-0.13
$2e^{-} + 2Ag^{+}(aq)> 2Ag(s)$	+0.80

2Agt is +1.60V Pb is lowen on the SRP Ag is higher "

It is oxidized E°for H is O

Calc. E.

For lead to reduce silver(I) ion, then lead must be oxidized. Lead metal will reduce silver(I) ion, the reaction $Pb(s) + 2Ag^{+}(aq) - ---> Pb^{2+}(aq) + 2Ag(s)$ has a positive E°.

Calculate Fo

$$E^{\circ} = E^{\circ}_{cathode} - E^{\circ}_{anode} = +0.80 v - (-0.13 v) = +0.93 v$$

5. Will 1 M HNO₃ oxidized Cu(s)? Explain. 67%

Y

Yes.

The E° for the reaction is +0.62 volts

Half-reaction E° (volts)

$$Cu^{2+}(aq) + 2e^{-} ----> Cu(s) +0.34$$

$$3e^{-} + NO_{3}(aq) + 4H^{+}(aq) - --> NO(g) + 2H_{2}O(l) + 0.96$$

For HNO₃ to oxidized Cu(s) the HNO₃ must be reduced. The reaction 3Cu(s) + 2NO₃⁻ $(aq) + 8H^{+}(aq) - ---> 3Cu^{2+}(aq) + 2NO(g) + 4H_2O(l)$ has a positive E° =+0.62 volts.

$$E^{\circ} = E^{\circ}_{cathode} - E^{\circ}_{anode} = +0.96 v - (+0.34 v) = +0.62 v$$

te7% 6. Will 1 M HCl oxidized Cu(s)? Explain. Call, F.

No

No

The cell potential is -0.34 v

The E° for Cu(s) + 2H⁺(aq)----> Cu²⁺(aq) + H₂(g) is negative, so the reaction will not occur.

7. Identify a reagent that will oxidize Zn(s) but will not oxidize Pb(s).

40 6 Sn^2+ or Ni^2+

Either $\operatorname{Sn}^{2+}(\operatorname{aq})$, $\operatorname{Ni}^{2+}(\operatorname{aq})$, $\operatorname{Co}^{2+}(\operatorname{aq})$ or $\operatorname{Fe}^{2+}(\operatorname{aq})$, because the E° for the reaction of any of these ions will produce a positive E° for Zn(s) and a negative E° for Pb(s).

8. Predict the products of the following reaction; $Pb(s) + Cr_2O_7^{2-}(aq) + H^+(aq) - \cdots > Cr_2O_7^{2-}(aq) + H^+(aq) + \cdots > Cr_2O_7^{2-}(aq) + Cr_2O_7^{2-}$

 $3Pb(s) + Cr2O7^{2}(aq) + 14H^{+}(aq) ----> 3Pb^{2}(aq) + Cr^{3}(aq) + H2O(l)$

Pb²⁺(aq), Cr³⁺(aq) and H₂O(l) 20%

9. Is there anything about the questions that you feel you do not understand? List your concerns/questions.

nothing

10. If there is one question you would like to have answered in lecture, what would that question be?

nothing

Does a greater SRP mean it can or cannot oxidize a substance? Do not or moturity dictate how well it oxidizes/reduce I feel like there is a lat ve haven't covered! recognize ox/red Balancing nector rxn Describing/explaining an Clecthochemical cest half-rxn has a metal / Joes not many, many [Calc. E = Ecothode - Eande different_v ways to ask this!!